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Abstract
We study various ways of characterizing the quantum optical number and phase
as complementary observables.

PACS numbers: 42.50.Dv, 03.65.Ta, 03.65.Db

1. Introduction

The aim of this paper is to clarify the sense in which number and phase in quantum optics
can be described as complementary observables. Here phase observables are characterized as
phase-shift-covariant positive operator measures, with the number operator playing the part of
the shift generator.

Let H be a complex separable Hilbert space, (|n〉)n�0 an orthonormal basis and
N = ∑∞

n=0 n|n 〉〈 n| the associated number observable with the domain D(N) = {ϕ ∈
H | ∑

n�0 n
2|〈ϕ | n 〉|2 < ∞}. Let L(H) denote the set of bounded operators on H, and

let B ([0, 2π)) denote the σ -algebra of the Borel subsets of the interval [0, 2π). We define a
phase observable as a positive normalized operator measure B ([0, 2π)) 	 X 
→ E(X) ∈ L(H)

which is covariant under the shifts generated by the number observable:

eixNE(X)e−ixN = E(X + x) (1)

for all X ∈ B ([0, 2π)) and x ∈ [0, 2π), where the addition X + x is modulo 2π . The effects
E(X),X ∈ B ([0, 2π)), are then of the form [1–3]

E(X) =
∞∑

n,m=0

cn,m
1

2π

∫
X

ei(n−m)x dx |n 〉〈m| X ∈ B([0, 2π)) (2)

where (cn,m)n,m�0 is the associated phase matrix, that is, a complex matrix generated by a
sequence of unit vectors (ξn)n�0 in H: cn,m = 〈ξn|ξm〉 for all n,m ∈ N.

It is well known that among the phase observables there is no projection measure, that is,
there is no self-adjoint operator whose spectral measure would be phase shift covariant.
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We proceed as follows. In section 2 we present various distinct classes of phase
observables, which will provide examples illustrating the degree of commutativity of phase
observables in section 3 and the noncoexistence of number and phase in section 4. Section 5
reviews the different formalizations of complementarity, which are then applied to number–
phase pairs in sections 6 and 7. It turns out that only such phase observables E, for which
‖E(X)‖ = 1 for E(X) �= O, can be complementary to number. In section 8 we show that
the canonical phase as well as the ground state phase space phase (the angle margin of the
Husimi Q-function) fulfil this necessary condition for the number–phase complementarity.
In section 9 we mention the number–phase uncertainty relations. Finally, in section 10 we
address the question of the operational content of the notions of complementarity studied here
and in earlier work.

2. Examples of phase observables

The canonical phase is defined by the phase matrix whose entries are cn,m = 1 for all n,m � 0:

Ecan(X) =
∞∑

n,m=0

1

2π

∫
X

ei(n−m)x dx |n 〉〈m| X ∈ B([0, 2π)). (3)

This is the unique semispectral measure associated with the polar decomposition of the lowering
operator, a = ∑ √

n + 1|n 〉〈 n + 1| = V |a| = V
√
N , V = ∫ 2π

0 eix dEcan(x), see, e.g. [4,
pp 141–2], or [2, example 3.4]. With the choice of the identity matrix as the phase matrix one
defines the trivial phase,

Etriv(X) = 1

2π

∫
X

dx I = �(X)

2π
I X ∈ B([0, 2π)) (4)

where �(X) denotes the Lebesgue measure of the Borel set X. We define an elementary phase
through the equation

Eel(X) = �(X)

2π
I + w

1

2π

∫
X

ei(s−t)x dx|s 〉〈 t | + w
1

2π

∫
X

ei(t−s)xdx|t 〉〈 s| (5)

where s �= t and w is any complex number with |w| � 1. Finally, the matrix elements

c|0〉
n,m = �(n+m

2 + 1)√
n!

√
m!

n,m ∈ N (6)

constitute the phase space phase observable generated by the ground state |0〉:

E|0〉(X) =
∞∑

n,m=0

c|0〉
n,m

1

2π

∫
X

ei(n−m)x dx |n 〉〈m|

= 1

π

∫
X

∫ ∞

0
|reiθ 〉〈reiθ | r dr dθ X ∈ B([0, 2π)).

We recall that phase observables E1 and E2 are unitarily equivalent (as phase-shift-
covariant observables) if there is a unitary map U = ∑∞

n=0 eiϑn |n 〉〈 n| such that E2(X) =
UE1(X)U

−1 for all X ∈ B ([0, 2π)). A phase observable E is called strong if its kth cyclic
moment operator V (k)

E := ∫ 2π
0 eikx dE(X) is the kth power of its first cyclic moment operator

V
(1)
E , that is, if for each k � 0, V (k)

E = (V
(1)
E )k . If E is strong, then N 	 k 
→ V

(k)
E ∈ L(H)

constitutes a (nonunitary) representation of the additive semigroup of the non-negative integers,
and one may ask whether the number observable n 
→ |n 〉〈 n| behaves covariantly under the
one-sided shifts generated by the phase. Observe that V (k)

E |n + k〉 = cn,n+k|n〉 for all n, k ∈ N,
which shows that N is E-covariant whenever |cn,m| = 1 for all n,m ∈ N.

Combining results from [2, 5] we have the following theorem:
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Theorem 1. For any phase observable E, with the phase matrix (cn,m), the following
conditions are equivalent:

(a) E is unitarily equivalent with Ecan;
(b) |cn,m| = 1 for all n,m;
(c) E generates the number shifts.

3. The degree of commutativity of a phase observable

Let com (E) denote the set of vectors ϕ ∈ H for which

E(X)E(Y )ϕ = E(Y )E(X)ϕ for all X, Y ∈ B([0, 2π)).

We say that E is commutative if com (E) = H, and totally noncommutative if com (E) = {0}.
Proposition 2. A phase observable E is commutative if and only if it is the trivial phase Etriv.
Proof. The trivial phase Etriv is commutative. Let E be a phase observable with the matrix
(cn,m)n,m�0. For any n ∈ N and Y ∈ B([0, 2π)), the map

B ([0, 2π)) 	 X 
→ µn,Y (X) := 〈 n | (E(X)E(Y )− E(Y )E(X))|n 〉 ∈ C

is a complex measure. For any k ∈ N,

∫ 2π

0
eikx dµn,Y (x) =




|cn,n+k|2 1

2π

∫
Y

eikx dx when n < k

(|cn,n+k|2 − |cn−k,n|2) 1

2π

∫
Y

eikx dx when n � k.

If E is commutative, then
∫ 2π

0 eikx dµn,Y (x) = 0 for all Y ∈ B ([0, 2π)), so that cn,n+k = 0,
for n < k, and |cn,n+k| = |cn−k,n|, for n � k. Let n � k, and let l � 0 be the smallest integer
for which n′ ≡ n − lk < k. Then |cn,n+k| = |cn−k,n| = · · · = |cn′,n′+k| = 0. But this means
that cn,m = 0 for all n �= m, that is, E = Etriv. �
Lemma 3. Let E be a phase observable with the matrix (cn,m)n,m�0. Then{

ϕ ∈ H | 〈 n |ϕ 〉 = 0 if cn,m �= 0 for some m �= n
} ⊆ com (E). (7)

Proof. For the phase observable E with the matrix (cn,m)n,m�0, let

A = {n ∈ N | cn,m = 0 for all m �= n}
and define

PA =
∑
s∈A

|s 〉〈 s|.

Then

E(X)PA = �(X)

2π
PA

and therefore

E(X)E(Y )PA = �(X)�(Y )

4π2
PA = E(Y )E(X)PA

for all X, Y ∈ B ([0, 2π)), so that

PA(H) = {ϕ ∈ H | 〈 n |ϕ 〉 = 0 if cn,m �= 0 for some m �= n}
⊆ com (E).

�
There are phase observables for which the set inclusion (7) is proper. For instance, the phase
observable Ew, with c0,1 = c1,0 = c1,2 = c2,1 = w, w ∈ C, 0 < |w| � 1/

√
2 and cn,m = 0

for all other n,m � 0, n �= m, is such.
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Proposition 4. Let E be a phase observable with the matrix (cn,m)n,m�0. If E is strong, then

com (E) = {
ϕ ∈ H | 〈 n |ϕ 〉 = 0 if cn,m �= 0 for some m �= n

}
. (8)

Proof. Consider a vector ψ = ∑∞
s=0 ds |s〉 ∈ H. In view of lemma 3, it remains to be shown

that ψ ∈ com (E) implies ψ ∈ PA(H). For any n ∈ N and X, Y ∈ B ([0, 2π)) we define

Fn,ψ(X, Y ) := 〈 n | (E(X)E(Y )− E(Y )E(X))ψ 〉.
For a fixed Y , the partial map X 
→ Fn,ψ(X, Y ) is a complex measure. For any k ∈ N,∫ 2π

0
eikx dFn,ψ(x, Y ) =

∞∑
l=0

(
cn,n+k〈 n + k |E(Y )|l 〉dl − cl,l+k〈 n |E(Y )|l 〉dl+k

)
= : F̃n,k,ψ(Y ).

Again, the map Y 
→ F̃n,k,ψ(Y ) is a complex measure, and we may carry out the integration∫ 2π

0
eiry dF̃n,k,ψ(y) =

∞∑
l=0

(
cn,n+kcn+k,ldlδ0,n+k−l+r − cn,lcl,l+kdl+kδ0,n−l+r

)
for all r ∈ Z. Ifψ ∈ com (E), then the value of the above integral is zero for alln, k ∈ N, r ∈ Z.
This implies

cn,n+kcn+k,n+k+rdn+k+r = cn,n+rcn+r,n+r+kdn+r+k when r � −n

cn,n+kcn+k,n+k+rdn+k+r = 0 when − n > r � −n− k.

On writing m = n + k + r these conditions are equivalent to

cn,n+kcn+k,mdm = cn,m−kcm−k,mdm when m � k

cn,n+kcn+k,mdm = 0 when k > m � 0.

It remains to be shown that if dm �= 0, then cn,m = 0 for all n �= m. Assume, therefore, that
dm �= 0 for some m ∈ N. Then

cn,n+kcn+k,m = cn,m−kcm−k,m when m � k (9)

cn,n+kcn+k,m = 0 when k > m � 0. (10)

Putting n = m, we get cm,m+k = 0 for all k > m. If m = 0, then c0,k = 0 for all k > 0.
Assume next that m �= 0. Since E is strong, we get

cm,m+k = cm,m+1cm+1,m+2 · · · cm+k−1,m+k

for all k > 0 and

cm,m−k = cm−k,m = cm−k,m−k+1cm−k+1,m−k+2 · · · cm−1,m

for all k > 0, k � m. Further, for k = 1 and n = m, we get from the first of the above
equalities that |cm−1,m| = |cm,m+1|. Thus it suffices to show that cm−1,m = 0. For that, assume
the contrary: cm−1,m �= 0. Fix l = 1, 2, . . . , and take n = m + l, k = 1. Then

cm+l,m+l+1cm+l+1,m = cm+l,m−1cm−1,m.

Since E is strong, this equation is equivalent to the following:

|cm+l,m+l+1|2cm+l,m = |cm−1,m|2cm+l,m.

Therefore, if cm,m+l �= 0, then also cm+l,m+l+1 �= 0, and

cm,m+l+1 = cm,m+lcm+l,m+l+1 �= 0.

We have thus shown that cm,m+l �= 0 for all l = 1, 2, . . . . But this is impossible since, by
choosing n = m and k = m + 1 in (10), we have cm,m+m+1 = 0. Therefore, cm−1,m = 0. �
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We note that the equality (8) is not restricted to strong phase observables only. Indeed,
an elementary phase with c0,2 = c2,0 = 1 is not strong but it has the property (8). The
canonical phase and all phase observables unitarily equivalent to it are strong, and all their
matrix elements are of modulus one. Therefore, we have:

Corollary 5. The canonical phase, as well as any phase observable unitarily equivalent to it,
is totally noncommutative.

4. The noncoexistence of number and phase

The notion of coexistence of observables has been introduced to describe the possibility of
measuring the observables together (see, e.g., [6–9]). If two observables are noncoexistent,
they cannot be measured together. Since the number observable N is given by a projection
measure n 
→ |n 〉〈 n| ≡ Pn, the coexistence of the number N and a phase E implies their
commutativity:

PnE(X) = E(X)Pn for all n ∈ N X ∈ B ([0, 2π)) . (11)

If we assume that the number N and a phase E commute, then it immediately follows that

E(X) =
∞∑
n=0

PnE(X)Pn =
∞∑
n=0

〈 n |E(X)|n 〉Pn = �(X)

2π
I (12)

for all X, which shows that E is the trivial phase. Hence we have:

Corollary 6. Any nontrivial phase and number are noncoexistent observables.

Let com(N,E) denote the set of vectors ϕ ∈ H for which

PnE(X)ϕ = E(X)Pnϕ for all n ∈ N X ∈ B ([0, 2π)) . (13)

Assume that ϕ ∈ com(N,E). Then PnE(X)ϕ = �(X)

2π Pnϕ for all n and X and thus
E(X)ϕ = �(X)

2π ϕ for all X. Hence, if com(N,E) = H, then E is the trivial phase. Moreover,
if ϕ ∈ com(N,E), ϕ �= 0, then 〈 k |ϕ 〉 �= 0 for some k, in which case cn,k = 0 for all n �= k.
Therefore,

com(N,E) = {ϕ ∈ H | 〈 n |ϕ 〉 = 0 if cn,m �= 0 for some m �= n}. (14)

When combined with lemma 3, this shows that

com(N,E) ⊆ com (E). (15)

There are examples of phase observables for which this inclusion is a proper one. However,
by proposition 4, if E is strong, then com(N,E) = com (E). In particular, we have:

Proposition 7. For any phase observable E, if cn,m �= 0 for all n,m � 0, then com(N,E) =
{0}.
Thus, for instance, the phase observables Ecan and E|0〉 commute with N in no state.

We recall that for any ϕ ∈ com(N,E), the map

(n,X) 
→ 〈ϕ |PnE(X)ϕ 〉 = |〈ϕ | n 〉|2 �(X)
2π

(16)

is a probability bimeasure and thus extends to a joint probability measure of number N and
phase E in the vector state ϕ (see e.g. [10, 11]).
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5. Forms of complementarity

The operational idea of complementarity of two observables in the sense of the mutual
exclusion of any two experimental procedures permitting the unambiguous definition of these
quantities [12] leads in the frame of the quantum theory of measurement [8] to the following
condition on number and phase: the number N and a phase E are complementary if for any
finite set {n1, . . . , nk} ⊂ N and for any X ∈ B ([0, 2π)), for which O �= E(X) �= I ,( k∑

i=1

Pni

)
∧ E(X) = O. (17)

This equality is to be understood in the sense that the greatest lower bound of the projection∑k
i=1 Pni and the effect E(X) exists and it equals the zero operator.

The probabilistic idea of complementarity of two observables in the sense of mutual
exclusion of the certain (probability one) predictions of the values of the two observables leads,
in the case of number and phase, to the following definition: N and E are probabilistically
complementary if

k∑
i=1

|〈ϕ | ni 〉|2 = 1 implies that 0 < 〈ϕ |E(X)ϕ 〉 < 1 (18)

〈ϕ |E(X)ϕ 〉 = 1 implies that 0 <

k∑
i=1

|〈ϕ | ni 〉|2 < 1 (19)

for all vector states ϕ, all nonempty sets {n1, . . . , nk} ⊂ N and for any X ∈ B ([0, 2π)), such
that O �= E(X) �= I .

There is yet another intuitive notion of complementarity, to which we refer as value
complementarity. The idea is that if one of the observables assumes a sharp value, then the
other should be uniformly distributed. There are technical problems in formalizing this idea
because continuous quantities do not have eigenvalues and for unbounded value sets a uniform
distribution cannot be easily defined. Here is our proposed definition. N and E are value
complementary if the following conditions are satisfied:

(i) for any number eigenstate |n〉, the phase distribution X 
→ 〈 n |E(X)|n 〉 is uniform;
(ii) for any sequence of vector states (ϕr), if the phase distributions X 
→ 〈ϕr |E(X)ϕr 〉

approach a delta distribution centred at some x0 ∈ [0, 2π), then the number distributions
n 
→ |〈ϕr | n 〉|2 get increasingly uniform; i.e., |〈ϕr | n 〉|2 → 0 as r → ∞.

The probability distribution of any phase observable E is uniform in every number state
|n〉 as 〈 n |E(X)|n 〉 = �(X)

2π . Thus (i) is always fulfilled and the value complementarity of N
and E depends only on (ii).

6. An example: the noncomplementarity of number and elementary phase

We consider the elementary phase Eel of equation (5). The spectrum of any Eel(X) �= O, I

consists of three eigenvalues

0 � e−(X) � e0(X) = �(X)

2π
� e+(X) � 1 (20)

with

e±(X) = �(X)

2π
± |z|

∣∣∣∣ 1

2π

∫
X

ei(s−t)x dx

∣∣∣∣. (21)
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We note that e+(X) = 1 only when Eel(X) = I , and e−(X) = 0 only when Eel(X) = O.
Hence we have

‖Eel(X)‖ = e+(X) < 1 whenever Eel(X) �= I (22)

and therefore, for any unit vector ϕ,

〈ϕ |Eel(X)ϕ 〉 < 1 whenever Eel(X) �= I. (23)

We recall that any operator A, with O � A � I , can be written in the form A = ∨
(P ∧ A |P one-dimensional projection) [13], where P ∧ A = λP , with λ = ‖A−1/2ϕ‖−2,
for any unit vector ϕ ∈ P(H) ∩ ran(A1/2) if the intersection is not the null space, and λ = 0
otherwise. For any Eel(X) �= O, I we now get

Pk ∧ Eel(X) = λ(X)Pk k = s, t

λ(X) = 2
e−(X)e+(X)

e−(X) + e+(X)

Pn ∧ Eel(X) = �(X)

2π
Pn n �= s, t.

These relations show that number and elementary phase are not complementary.
For the probabilistic complementarity of N and Eel we need to check only the first

implication in the definition (since the other holds trivially due to equation (23)). Assume
that

∑k
i=1 |〈ϕ | ni 〉|2 = 1. If {s, t} �⊂ {n1, . . . , nk}, then

〈ϕ |Eel(X)ϕ 〉 = �(X)

2π
which is less than unity whenever Eel(X) �= I . If s, t ∈ {n1, . . . , nk}, then

〈ϕ |Eel(X)ϕ 〉 = �(X)

2π
+ 2 Re

(
z〈ϕ | s 〉〈 t |ϕ 〉 1

2π

∫
X

ei(s−t)x dx

)

� �(X)

2π
+ |z|�(X

′)
2π

which is less than unity whenever |z| < 1 and Eel(X) �= I . Therefore, N and Eel are
probabilistically complementary. In view of (23), they are also value complementary.

7. Number and canonical phase

Proposition 8. The canonical phase satisfies 〈ϕ |Ecan(X)ϕ 〉 < 1 for any X such that
Ecan(X) �= I and for any unit vector ϕ ∈ H.

Proof. The minimal Neumark dilation Ẽcan of Ecan in L2 ([0, 2π)) is the canonical spectral
measure X 
→ Ẽcan(X), with Ẽcan(X) acting as multiplication by the characteristic function
χX. The Hilbert space H is identified with the Hardy space H 2 in L2 ([0, 2π)). If
〈ϕ |Ecan(X)ϕ 〉 = 1 for some unit vector ϕ ∈ H 2 and for someX for whichEcan(X) �= I , then
ϕ vanishes on the complement setX′, which has positive measure. It follows from [14, theorem
13.13] that ϕ is zero, which is a contradiction. �
Corollary 9. Number and canonical phase are probabilistically complementary.

We consider next the value complementarity of N and an arbitrary phase E.

Proposition 10. Let (ψm)m∈N be a sequence of unit vectors for which the probability measures
X 
→ 〈ψm |E(X)ψm 〉 tend (with m → ∞) to a Dirac measure δθ , θ ∈ [0, 2π). Then the
number probabilities |〈ψm | n 〉|2 tend to zero for all n.
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Proof. For the phase observable E with the phase matrix (cn,m)n,m∈N, put pE
ψ(X) :=

〈ψ |E(X)ψ〉, for any unit vector ψ . Let (ψm)m∈N ⊂ H be a sequence of unit vectors such that

lim
m→∞pE

ψm
([0, x)) = δθ ([0, x)) =

{
0 when 0 < x < θ

1 when θ < x � 2π

where δθ is the Dirac measure concentrated on the point θ ∈ [0, 2π). This implies that
limm→∞

∫ 2π
0 eikx dpE

ψm
(x) = eikθ for all k ∈ N (see e.g. [15, Theorem 26.3]). Then∣∣∣∣

∫ 2π

0
eikx dpE

ψm
(x)

∣∣∣∣
2

=
∣∣∣∣∣

∞∑
n=0

cn,n+k〈n|ψm〉〈n + k|ψm〉
∣∣∣∣∣
2

�
∞∑
l=k

|〈l|ψm〉|2 � 1.

The left-hand side converges to unity for all k ∈ N, and so
∞∑
l=k

|〈l|ψm〉|2 → 1 as m → ∞

for all k ∈ N if and only if
p∑

n=0

|〈n|ψm〉|2 → 0 as m → ∞ (24)

for all p ∈ N. �
Equation (24) implies that limm→∞〈ψm|Nψm〉 → ∞. This situation, where the number gets
large and the phase arbitrarily well defined, corresponds to the classical limit for a single-mode
photon field.

Corollary 11. Number N and any phase E are value complementary.

8. On the norm of the phase effects E(X)

In section 6 we saw that the norm of the effects Eel(X) is strictly less than one whenever
Eel(X) �= I . On the other hand, a phase E can be complementary to number only if
‖E(X)‖ = 1 for all E(X) �= O. Indeed, assume that ‖E(X)‖ < 1 for a nonzero effect
E(X). Then the range of E(X′) is H and therefore P ∧E(X′) �= O for any one-dimensional
projection P . Hence N and E are noncomplementary. In this section we show that the norms
of any nonzero effects of Ecan and E|0〉 are one. To prove this claim we need to develop some
auxiliary results.

To start with we recall (e.g. from [16, p 138]) that a point x ∈ R is a Lebesgue point of a
Lebesgue integrable function f : R → R, if

lim
r→0+

1

2r

∫
[x−r,x+r]

|f (y)− f (x)| dy = 0.

We only need this notion in the case where f is the characteristic function χX of a Borel X.
Clearly, x ∈ X is a Lebesgue point of χX if and only if

lim
r→0+

1

2r
�(X ∩ [x − r, x + r]) = 1.

Lemma 12. Let X ∈ B(R) and x ∈ X be a Lebesgue point of χX. Then

lim
r→0+

1

r
�(X ∩ [x − r, x]) = 1

and

lim
r→0+

1

r
�(X ∩ [x, x + r]) = 1.
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Proof. We prove the first equality; the proof of the second is similar. Let ε > 0. There is a
δ > 0 such that �(X∩ [x−r, x+r]) � 2r−εr , whenever r < δ. Since �(X∩(x, x+r]) � r , it
follows that �(X∩[x−r, x]) = �(X∩[x−r, x+r])−�(X∩(x, x+r]) � 2r−εr−r = r(1−ε)

if 0 < r < δ. �

Lemma 13. Let f : [0,∞) → [0,∞) be a (not necessarily strictly) decreasing function,
and let X ∈ B(R). Suppose that there are numbers q ∈ [0, 1] and δ > 0 such that
�([0, r] ∩X) � rq, whenever 0 < r � δ. Then∫

X∩[0,δ]
f (x) dx � q

∫
[0,δ]

f (x) dx.

Proof. By changing the values of f on a countable set if necessary, we may assume that f is
left continuous. Denote a = f (0)− f (δ). If n ∈ N, for k = 0, 1, . . . , n write

xk = sup

{
x ∈ [0, δ]

∣∣∣∣ f (x) � f (0)− k

n
a

}
so that 0 � x0 � x1 � · · · � xn = δ. If xk � t � xk+1, then

f (0)− k

n
a � f (t) � f (0)− k + 1

n
a

and it is easily seen that

δf (δ) +
a

n

n∑
k=1

xk �
∫

[0,δ]
f (x) dx � δf (δ) +

a

n

n−1∑
k=0

xk.

Since the difference of the left and right extremes is a
n
δ, we see that for any ε > 0, n can be

chosen such that a
n
δ < ε and thus

δf (δ) +
a

n

n−1∑
k=0

xk + ε �
∫

[0,δ]
f (x) dx � δf (δ) +

a

n

n−1∑
k=0

xk.

Let �2 be the two-dimensional Lebesgue measure and denote

Zk = [0, xk] ×
[
f (0)− k + 1

n
a, f (0)− k

n
a

]
for k = 0, . . . , n− 1, and Zn = [0, δ] × [0, f (δ)]. Then by the assumption we get∫

X∩[0,δ]
f (x) dx �

n∑
k=0

�2(Zk ∩ {(x, y) | x ∈ X})

= f (δ)�([0, δ] ∩X) +
a

n

n−1∑
k=0

�([0, xk] ∩X)

� q

[
δf (δ) +

a

n

n−1∑
k=0

xk

]
� q

∫
[0,δ]

f (x) dx − qε.

Letting ε → 0 we get the claim. �

Theorem 14. Let (fn)n∈N be a sequence of functions fn : R → [0,∞) such that

(i) fn(x) � fn(y), if x � y � 0;
(ii) fn(x) � fn(y), if 0 � x � y;

(iii)
∫

R
fn(x) dx = 1;

(iv) limn→∞
∫

[−δ,δ] fn(x) dx = 1 for any δ > 0.
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(a) If X ∈ B(R) is such that 0 ∈ X and 0 is a Lebesgue point of χX, then
limn→∞

∫
X
fn(x) dx = 1.

(b) If X ∈ B(R) is such that �(X) > 0, then there is a point a ∈ X such that defining
gn(x) = fn(x − a) we have limn→∞

∫
X
gn(x) dx = 1.

Proof. (a) By lemma 12 we may choose δ > 0 such that �([0, r] ∩ X) > r(1 − ε)

and �([−r, 0) ∩ X) > r(1 − ε) whenever 0 < r � δ. By lemma 13 we then have∫
X∩[0,δ] fn(x) dx � (1 − ε)

∫
[0,δ] fn(x) dx, and by an analogous argument we also get∫

X∩[−δ,0) fn(x) dx � (1 − ε)
∫

[−δ,0) fn(x) dx. Since limn→∞
∫

[−δ,δ] fn(x) dx = 1, there is
n0 ∈ N such that

∫
[−δ,δ] fn(x) dx > 1 − ε whenever n � n0. Thus∫

X

fn(x) dx �
∫
X∩[−δ,0)

fn(x) dx +
∫
X∩[0,δ]

fn(x) dx

� (1 − ε)

[ ∫
[−δ,0)

fn(x) dx +
∫

[0,δ]
fn(x) dx

]
� (1 − ε)2

for all n � n0.
(b) The Lebesgue points of χX form a set whose complement has measure zero (see [16,

theorem 7.7, p 138]). Since �(X) > 0, there is such a point a ∈ X. Using a translation, we
may reduce the proof of this part to (a). �
Remark 15. In proving part (a) above the monotonicity conditions (i) and (ii) cannot be
dispensed with. For example, let

X = {0} ∪
∞⋃
n=1

([
− 1

2n
,− 1

2n+1

(
1 +

1

n

)]
∪

[
1

2n+1

(
1 +

1

n

)
,

1

2n

])
.

It is easy to show that 0 is a Lebesgue point of χX. On the other hand, we can find (even
continuous) functions fn : R → [0,∞) such that

∫
R
fn(x) dx = 1 and the support of fn is

contained in the open interval ( 1
2n+1 ,

1
2n+1 (1 + 1

n
)), so that (iv) holds but

∫
X
fn(x) dx = 0 for all

n ∈ N.

We are now ready to derive a sufficient condition for a phase observable E to satisfy
‖E(X)‖ = 1 whenever E(X) �= O. Let E be given with its phase matrix (cn,m)n,m∈N. For
any unit vector ψ ∈ H, the phase probability measure pE

ψ is absolutely continuous with
respect to the Lebesgue measure �. Let gEψ denote the Radon–Nikodým derivative, so that
pE
ψ(X) = (2π)−1

∫
X
gEψ (θ) dθ . This is a 2π -periodic density function R → [0,∞]. Consider

the following class of unit vectors:

ψr :=
√

1 − r2
∞∑
n=0

eiυnrn|n〉 r ∈ (−1, 1)

where (υn)n∈N ⊂ R. The density function gEψr
is continuous and of the form

gEψr
(θ) = (

1 − r2
) ∞∑
n,m=0

cn,me−i(υn−υm)rn+mei(n−m)θ

where the series converges absolutely.

Lemma 16. With the above notations, if limn→∞ cn,n+ke−i(υn−υn+k) = 1 for all k ∈ N, for some
(υn)n∈N ⊂ R, then

lim
r→1−

1

2π

∫
[−δ,δ]

gEψr
(θ) dθ = 1

for all δ > 0.
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Proof. Suppose that

lim
n→∞ cn,n+ke

−i(υn−υn+k) = 1 (25)

for all k ∈ Z
+, where (υn)n∈N ⊂ R. The Fourier–Stieltjes coefficients of the probability

measure pE
ψr

are of the form

crk := 1

2π

∫ 2π

0
e−ikθgEψr

(θ) dθ = rk(1 − r2)

∞∑
n=0

cn+k,ne−i(υn+k−υn)r2n

and cr−k = crk for all k ∈ N and r ∈ (−1, 1). Next we show that limr→1− crk = 1 for all k ∈ Z.
Fix k ∈ Z

+ and ε > 0. Since (25) holds, one may choose such an nε ∈ Z
+ that∣∣cn+k,ne−i(υn+k−υn) − 1

∣∣ < ε/2 for all n � nε . Since
∑∞

n=0 r
2n = 1

/ (
1 − r2

)
, r ∈ (−1, 1), one

gets

∣∣crk/rk − 1
∣∣ �

(
1 − r2

) nε−1∑
n=0

∣∣cn+k,ne−i(υn+k−υn) − 1
∣∣ r2n

+
(
1 − r2

) ∞∑
n=nε

∣∣cn+k,ne−i(υn+k−υn) − 1
∣∣ r2n

� 2
(
1 − r2nε

)
+ ε/2.

Choose rε ∈ [0, 1) such that 2
(
1 − r2nε

)
< ε/2 when r ∈ [rε, 1) to get

∣∣crk/rk − 1
∣∣ < ε for

all r ∈ [rε, 1). Thus, crk ∼ r |k| and crk → 1 for all k ∈ Z when r → 1−.
The condition limr→1− crk = 1, k ∈ Z, implies that

lim
r→1−

1

2π

∫ δ

−δ

gEψr
(θ) dθ = 1

for all δ > 0. �

Lemma 16 applies, in particular, to the canonical phase. Moreover, in that case the density
function gEcan

ψr
is simply

g
Ecan
ψr

(θ) = (1 − r2)

∞∑
n,m=0

rn+mei(n−m)θ = 1 − r2

1 − 2r cos θ + r2
.

Defining fn(x) := g
Ecan
ψ1−(n+1)−1

(x), |x| � π , and fn(x) = 0, |x| > π , one gets a sequence
(fn)n∈N which fulfils the conditions of theorem 14. Consider next the phase observable E|0〉.
For coherent states |r〉 = e−r2/2 ∑

n�0
rn√
n
|n〉, r � 0, we obtain [5]

g
E|0〉
|r〉 (θ) =

∫ ∞

r2
e−v dv + e−r2 sin2 θ 2r cos θ

∫ ∞

−r cos θ
e−u2

du.

Functions fn(x) := g
E|0〉
|r=n〉(x), |x| � π , fn(x) = 0, |x| > π , also fulfil the conditions of

theorem 14. Hence we have the following results:

Proposition 17. If X ∈ B([0, 2π)) has nonzero Lebesgue measure, then ‖Ecan(X)‖ = 1 and
‖E|0〉(X)‖ = 1.

Hence both the canonical phase Ecan and the ground state phase E|0〉 fulfil this necessary
condition for the number–phase complementarity. The question remains, however, whether
these observables actually are complementary to the number.
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9. On number–phase uncertainty relations

The number–phase uncertainty relations are often presented as a kind of quantitative expression
for the complementarity of this pair of observables. Although we do not support this viewpoint,
we find it useful to briefly elaborate on the number–phase uncertainty product, especially for
high-amplitude coherent states.

A phase observable E is a periodic quantity. Therefore, the variance Var (E,ψ) of the
phase distribution pE

ψ in a vector state ψ ∈ H, ‖ψ‖ = 1, though well defined, is not a
good measure of phase uncertainty. For periodic distributions the appropriate notion is that
of minimum variance, introduced by Lévy [17]. Using the density gEψ of pE

ψ , the minimum
variance of the phase distribution pE

ψ is then defined as

VAR (E,ψ) := inf

{
1

2π

∫ β+π

β−π

(θ − α)2 gEψ (θ) dθ

∣∣∣∣α, β ∈ R

}

and one finds that 0 � VAR (E,ψ) � π2/3. The minimum variance of the canonical phase
Ecan in a coherent state |z〉 has, for large |z|, the following asymptotic form (for details,
see [5, VII A, C]):

VAR (Ecan, |z〉) � 1

4

1

|z|2 .

On the other hand, the variance of the number observable N in a coherent state |z〉 is
Var (N, |z〉) = |z|2. so that, for large |z|, one has

Var (N, |z〉)VAR (Ecan, |z〉) � 1
4 .

The logical independence of complementarity and uncertainty relations in general was
clearly established long ago [18]. The concept of complementarity is linked with the
impossibility of joint measurements of two observables. By contrast, as is evident from the
above formalizations, the uncertainty relation, as well as the notions of probabilistic and value
complementarity, refer to features of the probability distributions of separate, independent
measurements of the two observables in question.

10. Conclusion

The set of covariant phase observables is a convex set in a natural way. Let E be any phase
observable. Then Eε(X) = εEtriv(X) + (1 − ε)E(X), X ∈ B ([0, 2π)), defines a phase
observable which is not complementary with number. Indeed, Eε(X) � ε �(X)2π Pk for all k � 0
so that Eε(X) ∧ Pk � ε �(X)2π Pk for all k � 0. This shows that every phase observable E is
‘arbitrarily close’ to a phase observable Eε which is not complementary with the number.

This observation, which generalizes to every canonical pair, implies that the
complementarity of such pairs, given that it holds, is not strictly testable. This is also true
for probabilistic complementarity in the sense that finite statistics can never confirm strictly
whether a given event has probability equal to one. Nevertheless, complementarity indicates
a relation between two observables which is robust under small imprecisions: if a pair of
observables is complementary, then a ‘nearby’ noncomplementary pair will only allow ‘small’
positive joint lower bounds between their positive operators.

The canonical phase, as well as any unitarily equivalent one, is an extremal element of
the convex set of phase observables. Indeed, by theorem 1, for all such phase observables
|cn,m| = 1, n,m � 0. Let (cn,m) be the phase matrix of a phase observable E, and assume that
E is a convex combination of phase observablesE1 andE2, that is, cn,m = λc(1)n,m + (1−λ)c(2)n,m,
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with some 0 < λ < 1. If |cn,m| = 1, it follows that |c(1)n,m| = |c(2)n,m| = 1, and that the phases
of c(1)n,m and c(2)n,m are the same. Therefore, cn,m = c(1)n,m = c(2)n,m for all n,m � 0, that is,
E = E1 = E2. We conclude with the conjecture that further analysis of the convex structure
of the set of phase observables may help to decide on the open question of the existence of a
phase that is complementary to number.
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